USGS - science for a changing world

Upper Midwest Environmental Sciences Center


Sensor data as a measure of native freshwater mussel impact on nitrate formation and food digestion in continuous-flow mesocosms

Bril,J.S., Durst,J.J., Hurley, B.M., Just, C.L. and Newton, T.J., 2014, Sensor data as a measure of native freshwater mussel impact on nitrate formation and food digestion in continuous-flow mesocosms. Freshwater Science, v 33, i2, p 17-424. doi:


Native freshwater mussels can influence the aquatic N cycle, but the mechanisms and magnitude of this effect are not fully understood. We assessed the effects of Amblema plicata and Lampsilis cardium on N transformations over 72 d in 4 continuous-flow mesocosms, with 2 replicates of 2 treatments (mesocosms with and without mussels), equipped with electronic water-chemistry sensors. We compared sensor data to discrete sample data to assess the effect of additional sensor measurements on the ability to detect mussel-related effects on NO3– formation. Analysis of 624 sensor-based data points detected a nearly 6% increase in NO3– concentration in overlying water of mesocosms with mussels relative to mesocosms without mussels (p < 0.05), whereas analysis of 36 discrete samples showed no statistical difference in NO3– between treatments. Mussels also significantly increased NO2– concentrations in the overlying water, but no significant difference in total N was observed. We used the sensor data for phytoplankton-N and NH4+ to infer that digestion times in mussels were 13 ± 6 h. The results suggest that rapid increases in phytoplankton-N levels in the overlying water can lead to decreased lag times between phytoplankton-N and NH4+ maxima. This result indicates that mussels may adjust their digestion rates in response to increased levels of food. The adjustment in digestion time suggests that mussels have a strong response to food availability that can disrupt typical circadian rhythms. Use of sensor data to measure directly and to infer mussel effects on aquatic N transformations at the mesocosm scale could be useful at larger scales in the future. 

Maximum eugenol and 14C-eugenol equivalent residue concentrations in the fillet tissue were measured immediately after the exposure (44.5 and 38.8 μg/g, respectively). Eugenol was the primary 14C-residue (> 90% of all 14C-residues) in extracts from fillet tissue taken from fish sampled immediately after the exposure (0 min) and from fish sampled at 30 and 60 min after the exposure. The depletion of 14C-eugenol residues from the fillet tissue was rapid (t1/2 = 26.25 min) after transferring the exposed fish to fresh flowing water.

native freshwater mussels, electronic sensor data, water chemistry, nitrate, inferred digestion time

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo logo U.S. Department of the Interior | U.S. Geological Survey
Page Contact Information: Contacting the Upper Midwest Environmental Sciences Center
Page Last Modified: January 29, 2016